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0.1. Notation

• C(X, Y ): The set of continuous functions from X to Y
• Ck(X, Y ): The set of functions from X to Y that are continuous (k = 0), continuously k-times

differentiable (k ∈ N), smooth (k = ∞), or analytic (k = ω), if well-defined between spaces X
and Y .
• Ck

c (X, Y ): The set of compactly supported functions contained in Ck(X, Y ).
• Ck

0 (X, Y ): If Y is some norm space, the set of functions f ∈ Ck(X, Y ) that vanish at infinity, i.e.
for all ε > 0, there exists some compact K ⊆ X such that for x 6∈ X, ‖f‖Y < ε
• C(X) = C(X,C)
• Ck(X) = Ck(X,C)
• Cc(X) = Ck

c (X,C)
• C0(X) = Ck

0 (X,C)
• Lp(X,µ), Lp(X): For 0 < p <∞, the space of measurable functions f : X → C such that

‖f‖Lp(X,µ) :=
(∫

X

|f(x)|pdµ(x)
)1/p

<∞.

If p =∞, this is the space of measurable functions f : X → C such that

‖f‖L∞(X,µ) := inf{C > 0 : |f(x)| < C µ− a.e.}
If µ is understood, we will simply write Lp(X) for Lp(X,µ).

• F(f) = f̂ : The Fourier transform of a function f .
• F(µ) = µ̂: The Fourier-Steiljes Transform of a Radon measure of bounded total variation, µ.
• A + B, A − B: For any group (G,+) with −x denoting the inverse of x ∈ G, for A,B ⊆ G,
A + B = {a + b : a ∈ A, b ∈ B} is called the sumset of A and B, −B = {−b : b ∈ B} and
A−B = A+ (−B) is the difference set of A and B.
• A+ x: For any group (G,+), x ∈ G, and A ⊆ G, A+ x = {a+ x : a ∈ A}.

0.2. Introduction

Harmonic Analysis is a very broad subject with several different facets such as

• The study of certain qualitative or quantitative properties of classes of functions and how the prop-
erties change when one applies various operators (Fourier Transform, Hilbert Transform, Convo-
lution, etc). For instance if f, g ∈ L2(Rn) it can be shown that ‖f ∗g‖L∞(Rn) ≤ ‖f‖L2(Rn)‖g‖L2(Rn).
• The study of the eigenvalues and eigenfunctions of the Laplacian on manifolds (or other domains),

usually to use properties of these to study more complicated functions (Spherical harmonics,
trigonometric polynomials).
• Representation of functions as the superposition of “basic waves” (Spherical harmonics, Fourier

Series, Wavelets).
• The study of functions using group actions/ symmetries such at translations or rotations (Har-

monic Analysis on Homogeneous spaces, Fourier Analysis on locally compact groups)

Another way to describe Harmonic Analysis is as a generalization of Fourier Analysis, which could
be describe as the study of representing or approximating functions by trigonometric functions. The key
ingredient for this is known as the Fourier transform. This can be defined on compact topological groups
and locally compact Abelian groups (which will be defined later), but the more well known domains are
finite Abelian groups (in which the Fourier transform is known as the Discrete Fourier Transform), the
circle T = [0, 1) (where one has Fourier Series), and Euclidean space R (where the Fourier transform is
called the Fourier transform, oddly enough).
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For a function f ∈ L1(T), the Fourier series of f is given by

(0.2.1) f(t) ∼
∑
n∈Z

f̂(n)e2πint,

where

(0.2.2) f̂(n) =

∫ 1

0

f(x)e−2πinxdx.

Alternatively, this function can be expressed as

(0.2.3) f(t) ∼ a0 +
∞∑
n=1

an cos(2πnt) + bn sin(2πnt),

with appropriate coefficients an and bn. This is the decomposition of a “signal” f into wave functions of
frequencies n. Such decompositions have a wide range of applications, with some of the earliest being to
find solutions to differential equations.

• Wave Equation: Let u(x, t) on T× [0,∞) satisfy ∂2u
∂t2

= ∂2u
∂x2

and u(0, t) = u(1, t) = 0. We wish to
determine what u could be, other than the trivial solution u = 0. Assuming that u(x, t) = g(x)h(t),
we have

(0.2.4)
g′′(x)

g(x)
=
h′′(t)

h(t)
= λ

for some λ. Thus g′′(x) − λg(x) = 0 and g(0) = g(1) = 0. The solutions to this would be
of the form g(x) = bn sin(2πnx) if λ = −4π2n2. Plugging in for λ, we have the solutions for
h′′(t) + 4π2n2h(t) = 0 are of the form an sin(2πnt) + cn cos(2πnt), so our general solution is of the
form

(0.2.5) u(x, t) =
∞∑
n=1

(
an sin(2πnt) + cn cos(2πnt)

)
bn sin(2πnx).

This wave equation describes the motion of a string that is held in place at both ends, with u(x, t)
being the height of the string at x and time t.
• Heat equation: Here, u(x, t) on T × [0,∞) satisfies ∂u

∂t
= ∂2u

∂x2
, u(x, 0) = f(x) for some function

f ∈ L1(T), and u(0, t) = u(1, t).
In this case, one gets as a general solution

(0.2.6) u(x, t) =
∑
n∈Z

f̂(n)e−4π
2n2te2πinx.

This heat equation describes the way the distribution along a ring with, with u(x, t) being a
measurement of heat at x and time t.

While such expressions are useful, this leads to several natural questions. When do these series converge,
and in what sense? Are there conditions on a function f we can place so that f̂(n) → 0 as |n| → ∞?
What else can we say about the Fourier coefficients of a function f based on properties of f?

The Fourier transform of a function f on R is given by

(0.2.7) f̂(s) =

∫
R
f(t)e−2πistdt.

The Fourier transform in this sense takes a function of time and sends it to a function of frequency.
As we will show, various operations (differentiation, convolution, etc) of functions in one domain have a
corresponding operation in the other. Generally speaking, the operation in one of the domains is easier
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than the corresponding operation in the other, allowing one to simplify the study of more complicated
functions.



CHAPTER 1

Fourier Analysis on Locally Compact Abelian Groups

We can generalize the theory used for classical spaces, connecting them and shedding more light as to
what is happening. The work here is mostly based off of the [Rud90, Fol15]. We recommend [Rud90] for
more exposition with relatively few requirements, and [Fol15] for building this theory with Representation
Theory. In both cases, Gelfand Theory and Banach Algebras play a role. This all makes for more general
theory than we need for this course, and so our methods may differ.

1.1. Locally Compact Abelian Groups

A topological group G is a group G with a topology such that the group operation ∗ : G×G→ G and
inverse operation ·−1 : G→ G are continuous. We call G locally compact if the topology is Hausdorff
(i.e. for every distinct x, y ∈ G, there exist disjoint open sets A,B ⊂ G such that x ∈ A and y ∈ B), and
locally compact (for every x ∈ G, there exist a compact neighborhood B of x, i.e. an open set A and
a compact set B such that x ∈ A ⊆ B).

While the theory of Fourier Analysis can also be built for compact groups, such as SO(d), this requires
representation theory, and will not be covered in the scope of this course. Instead, we shall focus on locally
compact Abelian groups.

Example 1.1.1. Here are some examples of locally compact Abelian groups

(1) The real numbers, R, under addition and Euclidean topology.
(2) The integers, Z, under addition and the discrete topology
(3) The torus, T ' R/Z ' [0, 1) (with 0 identified with 1), under addition ( mod 1) and with the

quotient topology.
(4) The cyclic group, Zn, under addition ( mod n) and with the discrete topology.
(5) The set of positive real numbers, R+, under multiplication and Euclidean topology.
(6) The rational numbers Q under addition and the discrete topology.
(7) The field of p-adic numbers, Qp, under addition and with the usual p-adic topology.
(8) Any Abelian group under the discrete topology.
(9) The Adele ring.

(10) If G is locally compact Abelian group and H is a closed subgroup, both H and G/H.
(11) Finite direct sums of locally compact Abelian groups with the product topology.
(12) The set of all sequences {an}∞n=1, with an ∈ Z2, with addition performed coordinatewise, i.e.

{an}∞n=1 + {bn}∞n=1 = {an + bn( mod 2)}∞n=1, and with topology making the map {an}∞n=1 7→
2
∑∞

n=1
an
3n

a homeomorphism from the group to the classical Cantor set.

For the rest of this section, we will assume that G is a locally compact Abelian group, with binary
operation +, and −x as the inverse of x ∈ G.

1.2. Haar Measure

Definition 1.2.1. A Radon measure µ on a locally compact Hausdorff space G is a Borel measure
which is

7
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(1) locally finite: for all x ∈ G, there is some neighborhood U of x such that µ(U) <∞.
(2) outer regular on Borel sets: if E ⊆ G is Borel, then

σ(E) = inf{σ(U) : E ⊆ U ⊆ G, U open}.
(3) inner regular on open sets: if U ⊆ G is open, then

σ(U) = sup{σ(K) : K ⊆ U, K compact}.
If there exist Radon measures µ1, µ2, µ3, µ4 such that supp(µ1) ∩ supp(µ2) = supp(µ3) ∩ supp(µ4) = ∅

and
µ := µ1 − µ2 + iµ3 − iµ4

is well defined on Borel sets of G, we call µ a complex Radon measure.

Definition 1.2.2. A Haar measure σ on a locally compact Abelian group G is a nonzero Radon
measure that is translation invariant, i.e.

(1.2.1) σ(U) = σ(U + x) for all measureable U ⊆ G and x ∈ G.

Theorem 1.2.3 (Haar’s Theorem). Let G be a locally compact Abelian group. Then there exists a Haar
measure σ on G. This measure is unique up to a constant, i.e. if σ and ν are both Haar measures on G,
then there is some c ∈ (0,∞) such that cν = σ.

A general discussion of Haar measures can be found in [Rud90][Chp 1.1] or [Fol15][Chp 2.2], with
the latter containing a proof of Theorem 1.2.3 (Haar’s Theorem). Left and right Haar measures can be
defined for general locally compact groups, and there is a more general version of Haar’s Theorem that
gives existence and uniqueness of each of these measures. In general, left and right Haar measures are
not the same. However, under certain conditions, such as G being Abelian or compact, one finds a Haar
measure that is both left and right translation-invariant. In this case, the Haar measure is also invariant
under inversion, which is a very useful property for getting Fourier analytic results. Generally, one takes
a specific Haar measure, usually with σ(G) = 1 if G is compact, and refers to it as the Haar measure. We
will collect a few properties of the Haar measure:

Proposition 1.2.4. Let G be a locally compact Abelian group, and σ its Haar measure. Then

(1) If E ⊆ G is a Borel set and x ∈ G, σ(E) = σ(−E) = σ(x+ E) = σ(E + x).
(2) If K ⊆ G is compact, then σ(K) is finite (follows from local finiteness and countable additivity of

Radon measures).
(3) If U ⊆ G is non-empty, then 0 < σ(U) (follows from translation-invariance and inner regularity

of Radon measures).

The Haar measure of any nonempty open set in G is always positive (or else the translation invariance
would mean σ(G) = 0).

Example 1.2.2. Here are some examples of Haar measures for certain groups

(1) R: Lebesgue measure
(2) T: Normalized Lebesgue measure on [0, 1)
(3) Any discrete group: The counting measure (possibly normalized if compact)
(4) R+: dx

|x|
(5) Direct sums of Abelian groups: product measure of corresponding Haar measures.

Unless otherwise noted, for a locally compact Abelian group G, we will denote the Haar measure as σ
and Lp(G) as the Lp space on G corresponding to σ.
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We also note that for general locally compact Abelian groups G, we do not assume that G is σ-compact
and so the Haar measure may not be σ-finite. This lack of σ-finiteness occurs, for instance, whenever G is
uncountable and has the discrete topology. This could mean there are cases where we would be prevented
from using certain results, such as Fubini’s Theorem. However, in the cases where we use it in this chapter
(involving function in Lp spaces for 1 ≤ p < ∞) this ends up not being a problem, as shown by the
discussion in Chapter 2.3 in [Fol15]. In particular, we will be implicitly using Proposition 2.0.1

1.2.1. Properties of Lp Spaces and Convolution.

Proposition 1.2.5. For all p ∈ [1,∞), the set of compactly supported, complex-valued, continuous
functions on G, Cc(G), is dense in Lp(G).

This can be found in [Rud87][Thm 3.14].

Lemma 1.2.6. Let f ∈ Lp(G) and for y ∈ G, define Lyf(x) = f(y + x). The map y 7→ Lyf is
continuous.

Proof. Assume that f ∈ Cc(G), and let A = supp(f) and B be a compact neighborhood of 0.
Compact support means that f is uniformly continuous, so there is some neighborhood Vε of 0 such that
if x− z ∈ Vε, then |f(x)− f(z)| < ε, and let C = B∩Vε. For y ∈ C, if f(y+x)− f(x) 6= 0, then y+x ∈ A
or x ∈ A, so since 0 ∈ C, x ∈ A − C = {a − b : a ∈ A, b ∈ C}, which has compact closure. We see that
f(y + x)− f(x) vanishes outside of A− C, and y + x− x = y ∈ Vε so(∫

G

|f(y + x)− f(x)|pdσ(x)
) 1
p

=
(∫

A−C
|f(y + x)− f(x)|dσ

) 1
p ≤ εσ(A− C)

1
p .

Due to the density of Cc(G) in Lp(G), we have that for any ε > 0 and f ∈ Lp(G), there exists some
g ∈ Cc(G) such that ‖f − g‖Lp(G) < ε, so for any y ∈ G,

‖Lyf − f‖Lp(G) ≤ ‖Ly(f − g)‖Lp(G) + ‖Lyg − g‖Lp(G) + ‖f − g‖Lp(G) < 2ε+ ‖Lyg − g‖Lp(G).

�

We define convolution on G

(1.2.3) (f ∗ g)(y) =

∫
G

f(y − x)g(x)dσ(x).

Loosely speaking, convolutions tend to preserve many “nice” properties of the functions involved, or
even improve upon them.

Example 1.2.4. Let f(x) = 1[−1,1](x) on R. Then we have

(f ∗ f)(x) =

∫
R
f(x− y)f(y)dy

=

∫
[x−1,x+1]∩[−1,1]

dy

=

{
0 |x| > 2

2− |x| |x| ≤ 2
.

So we have gained continuity.
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Conceptually, by convolving f with “good” functions g, we can replace f(x) with a function that takes
an “average” around x, particularly in the case that g is nonnegative and

∫
g = 1. If g is is smooth, this

is known as mollifying.
Convolution leads to continuity and boundedness in a much more general situation.

Lemma 1.2.7. Let 1 < p, q <∞ such that 1
p

+ 1
q

= 1. Then

(1.2.5) ‖f ∗ g‖L∞(G) ≤ ‖f‖Lp(G)‖g‖Lq(G)

and f ∗ g ∈ C0(G).

Proof. Let x ∈ G. Then we have, by Hölder’s inequality

|(f ∗ g)(x)| =
∣∣∣ ∫

G

f(x− y)g(y)dσ(y)
∣∣∣

≤
∫
G

|f(x− y)| |g(y)|dσ(y)

≤
(∫

G

|f(x− y)|pdσ(y)
)1/p(∫

G

|g(y)|qdσ(y)
)1/q

and the invariance of the Haar measure under translation and inversion give us (1.2.5).
Now, suppose that x, a ∈ G. Then by the invariance of the Haar measure under translation and

inversion and Hölder’s inequality

|(f ∗ g)(x− a)− (f ∗ g)(x)| =
∣∣∣ ∫

G

f(x− a− y)g(y)dσ(y)−
∫
G

f(x− y)g(y)dσ(y)
∣∣∣

=
∣∣∣ ∫

G

f(x− y)g(y − a)− f(x− y)g(y)dσ(y)
∣∣∣

≤
∫
G

|f(x− y)||g(y − a)− g(y)|dσ(y)

≤ ‖f‖Lp(G)‖L−ag − g‖Lq(G).

The continuity Lemma 1.2.6, then tells us that f ∗ g is continuous. Thus, if f, g ∈ Cc(G), f ∗ g ∈ Cc(G).
From 1.2.5, we may choose sequences of functions fn, gn ∈ Cc(G) such that fn → f in Lp(G) and

gn → g in Lq. Using the triangle inequality and Hölder’s inequality, we find

‖f ∗ g − fn ∗ gn‖L∞(G) ≤ ‖f ∗ g − f ∗ gn‖L∞(G) + ‖f ∗ gn − fn ∗ gn‖L∞(G)

≤ ‖f‖Lp(G)‖g − gn‖Lq(G) + ‖f − fn‖Lp(G)‖g‖Lq(G),

so fn ∗ gn converges uniformly to f ∗ g. Since each fn ∗ gn as compact support, and f ∗ g ∈ C(G), f ∗ g
must vanish at infinity. �

One can quickly check that convolution preserves functions being compactly supported. If supp(f) =
K ⊆ G and supp(g) = M ⊆ G then supp(f ∗ g) ⊆ K +M , so if K and M are compact, so is supp(f ∗ g).

Corollary 1.2.8. If f, g ∈ Cc(G), f ∗ g ∈ Cc(G) and supp(f ∗ g) ⊆ supp(f) + supp(g).

Proof. Since f, g ∈ L2(G), f ∗ g ∈ C0(G) by Lemma 1.2.7. Now, if A = supp(f) and B = supp(g),
then

(f ∗ g)(x) =

∫
G

f(x− y)g(y)dσ(x) =

∫
B

f(x− y)g(y)dσ(x).

Thus, (f ∗ g)(x) 6= 0 only if x− y ∈ A for some y ∈ B, which means x ∈ A+ y ⊂ A+B. �
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Finally, convolution preserves the integrability of functions.

Proposition 1.2.9. If f, g ∈ L1(G), then

‖f ∗ g‖L1(G) ≤ ‖f‖L1(G)‖f‖L1(G)

Proof. Using translation invariance of the Haar measure and Fubini’s Theorem, we have∫
G

|(f ∗ g)(y)|dσ(y) ≤
∫
G

∫
G

|f(y − x)| · |g(x)|dσ(x)dσ(y)

=

∫
G

|g(x)|
∫
G

|f(y − x)|dσ(y)dσ(x)

=

∫
G

|g(x)|dσ(x)

∫
G

|f(y)|dσ(y).

�

This means L1(G) is a Banach algebra with addition and convolution (acting as the multiplication
operation). We note that Proposition 1.2.9 can generalized to show that the convolution of an L1 function
and Lp function, for p ∈ [1,∞], is itself an Lp function (See [Fol15][Proposition 2.40]).

1.2.2. Approximate Identities. When G is discrete, the function δ0, defined by δ0(0) = 1 and
δ0(x) = 0 for x 6= 0, is the identity element of the algebra L1(G): (f ∗ δ0)(x) = (δ0 ∗ f)(x) = f(x). Note
that

∫
G
f(x)δ0(x)dσ(x) = (f ∗ δ0)(0) = f(0). When G is not discrete, there is a measure that acts this

way, but no such function. It is helpful to remain in the realm of functions, but to also have something to
substitute for an identity element, so we instead use an approximate identity.

Definition 1.2.10. An approximate identity {ψU}U∈U , for some local basis U for 0 (see Definition
1.3.2), is a family of functions ψU ∈ L1(G), such that

(1) supp(ψU) ⊆ U is compact,
(2) ψU(x) ≥ 0 for all x ∈ G,
(3)

∫
G
ψU(x)dσ(x) = 1.

We will often abuse notation, and call ψU an approximate identity for convenience.
We can place a partial ordering on U by saying U1 ≤ U2 if U1 ⊆ U2. We note that 0 ∈ U1 ∩U2, so there

is always some U3 ∈ U such that U3 ⊆ U1 ∩ U2. Thus, for any U1, U2 ∈ U , there is some U3 ∈ U such that
U3 ≤ U1, U2. If A is some normed vector space, h ∈ A, and P : {ψU}U∈U → A, we say that

lim
U→{0}

P (ψU) = h

if, for all ε > 0, there is some U ∈ U such that for all V ≤ U , ‖P (ψV )− h‖A < ε.
In other words, an approximate identity is a net. However, if G is first countable, which is the case

for most spaces of interest, such as Rd, Td, and discrete spaces, we may instead take a sequence of
neighborhoods {Uj}j∈N, with 0 ∈ Uj+1 ⊂ Uj.

We also note that the definition of an approximate identity means that for any neighborhood V of 0,

lim
U→{0}

∫
G\V

ψU(x)dσ(x) = 0,

so the total mass is eventually concentrated near/at 0.

Example 1.2.6. Here are some examples of approximate identities:
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(1) Let B(0, r) be the balls of radius r and centered at the origin in Rn. These form a local basis of 0.
Let φ : Rn → R be a nonnegative integrable function such that supp(φ) is compact and contained
in B(0, 1) and

∫
Rn φ(x)dx = 1. Define φr(x) = r−nφ(x

r
) for r > 0. We quickly see that all φr are

nonnegative and compactly supported on r supp(φ) ⊂ B(0, r). From a change of variables y = x
r
,

we see as well that

(1.2.7)

∫
Rn
φr(x)dx =

∫
Rn
r−nφ(

x

r
)dx =

∫
Rn
φ(y)dy = 1.

(2) There exists some compact neighborhood K of 0. For each U in the local basis, let VU = K ∩ U ,
which is a neighborhood of 0 with compact closure. Define ψU(x) = 1

σ(VU )
1VU (x).

(3) By Urysohn’s Lemma (see [Rud87][Lemma 2.12] for the relevant version), for each U in the
local basis, there exists a ψU ∈ Cc(G) such that ψU(x) = 1 on VU (from the example above),
supp(ψU) ⊆ U and ψU(G) = [0, 1].

Theorem 1.2.11 (Minkowski’s Inequality for Integrals). Let (X,M, µ) and (Y,N, ν) be σ-finite measure
spaces, and f be an (M ⊗ N)-measureable function on X × Y . If 1 ≤ p ≤ ∞, f(·, y) ∈ Lp(G, µ) for a.e.
y, and the function defined by y 7→ ‖f(·, y)‖Lp(X,µ) is in L1(Y, ν), then∥∥∥∫

Y

f(·, y)dν(y)
∥∥∥
Lp(X,µ)

≤
∫
Y

‖f(·, y)‖Lp(X,µ)dν(y).

This can be found in [Fol99][Thm 6.19].

Theorem 1.2.12. Let ψU be an approximate identity. Then

lim
U→{0}

‖f ∗ ψU − f‖Lp(G) = 0

for 1 ≤ p <∞ and f ∈ Lp(G), or p =∞ and f uniformly continuous.

Proof. Since
∫
G
ψU(x)dσ(x) = 1, we have

f ∗ ψU − f =

∫
G

ψU(y)
(
L−yf(x)− f(x)

)
dσ(y).

If 1 ≤ p < ∞ and g ∈ Lp(G), then σ is σ-finite on supp(g), by Proposition 2.0.1, and since supp(ψU)
is compact, the measures defined by 1supp(g)(z)dσ(z) and ψU(y)dσ(y) are σ-finite on G. By Minkowski’s
inequality (not the one for integrals), we know that L−yf − f ∈ Lp(G), and the continuity of translation
(from Lemma 1.2.6) and inversion on G tells us that for we have that for U a sufficiently small neighborhood
of 0 ∫

G

∣∣∣‖L−yf − f‖Lp(G)ψU(y)
∣∣∣dσ(y) <∞,

so we may use Theorem 1.2.11 (Minkowski’s inequality for Integrals), giving us

‖f ∗ ψU − f‖Lp(G) =

∥∥∥∥∥
∫
G

ψU(y)
(
L−yf − f

)
dσ(y)

∥∥∥∥∥
Lp(G)

≤
∫
G

‖L−yf − f‖Lp(G)ψU(y)dσ(y)

≤ sup
y∈U
‖L−yf − f‖Lp(G).

Continuity then tells us this goes to zero as U → {0}.
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If p =∞ and f is then

sup
x∈G

∣∣∣ ∫
G

ψU(y)
(
L−yf(x)− f(x)

)
dσ(y)

∣∣∣ ≤ sup
x∈G

∫
G

|ψU(y)| · |L−yf(x)− f(x)|dσ(y)

≤
∫
G

|ψU(y)| sup
x∈G
|L−yf(x)− f(x)|dσ(y),

and the uniform continuity of f finishes the proof. �

Between this result and our discussion on convolution, we can now construct an explicit family of
functions which allow us to approximate a function f , while gaining other useful properties, such as
continuity.

We required ψU to be compactly supported in order guarantee that we met the σ-finiteness conditions
of Theorem 1.2.11 (Minkowski’s Inequality for Integrals). However, if σ is already σ-finite, we can actually
loosen our restrictions.

Definition 1.2.13. If σ is σ-finite, then we define a family of L1(G) functions ψε to be an approxi-
mate identity, as ε→ 0, if

(1) There exists some c > 0 such that ‖ψε‖L1(G) ≤ c for all ε > 0,
(2)

∫
G
ψε(x)dσ(x) = 1 for all ε > 0,

(3) for any neighborhood U of 0, we have
∫
G\U |ψε(x)|dσ(x)→ 0 as ε→ 0.

Example 1.2.8. With this broader definition, we have that the following examples of approximate
identities (see [Gra10][Examples 1.2.16 and 1.2.18]):

(1) On R, let P (x) = 1
π(x2+1)

and Pε = ε−1P (x
ε
) for ε > 0. The function Pε is called a Poisson

kernel and these form an approximate identity.
(2) On T, for N ∈ N, let

(1.2.9) FN(t) =
N∑

j=−N

(
1− |j|

N + 1

)
e2πijt =

1

N + 1

(
sin(π(N + 1)t)

sin(πt)

)2

.

The function FN is called a Fejér kernel, and these form an approximate identity.

1.3. Characters and Dual Group

Definition 1.3.1. A character on a locally compact Abelian group G is a continuous homomorphism
ξ : G→ S1 := {e2πix : x ∈ [0, 1)}. We call the set of all characters, Ĝ, the dual group of G.

Example 1.3.1. Here we provide some examples of the duals of locally compact Abelian groups.

(1) R̂ ' R, with ξ(x) = e2πiξx

If ξ ∈ R̂, we have ξ(0) = 1, so there exists a > 0 such that
∫ a
0
ξ(t)dt 6= 0. Then

ξ(x)

∫ a

0

ξ(t)dt =

∫ a

0

ξ(t+ x)dt =

∫ a+x

x

ξ(t)dt,

so (by the fundamental theorem of calculus), ξ is differentiable, with

ξ′(x) =
ξ(a+ x)− ξ(x)∫ a

0
ξ(t)dt

= cξ(x), c :
ξ(a)− 1∫ a
0
ξ(t)dt

.

Therefore, ξ(x) = ecx, and since |ξ(x)| = 1, we must have c = 2πiy for some y ∈ R.
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(2) T̂ ' Z, with ξ(x) = (e2πix)ξ.
Since T ' R/Z, the characters of T are the characters of R which are 1 on Z.

(3) Ẑ ' T, with ξ(x) = (e2πiξ)x.

If ξ ∈ Ẑ, then with α = ξ(1), ξ(n) = ξ(1)n = αn.

(4) Ẑn ' Zn, with ξ(x) = e2πiξx/n.
The characters of Zn are the characters of Z which are 1 on nZ, and so are of the form

ξ(m) = αm, where α is the nth root of 1.
(5) If G1, ..., Gn are locally compact Abelian groups, then

(G1 × · · · ×Gn)̂ = Ĝ1 × · · · × Ĝn,

with ξ = (ξ1, ..., ξn) ∈ Ĝ1 × · · · × Ĝn defined by ξ((x1, ..., xn)) =
∏n

j=1 ξj(xj).

(6) R̂n ' Rn, T̂n ' Zn, Ẑn ' Tn and Ĝ = G for any finite Abelian group.

For ξ, η ∈ Ĝ, let f and g satisfy ξ(x) = e2πif(x) and η(x) = e2πig(x). Then we see

ξ−1(x) = e−2πif(x) = ξ(x)

and

(ξη)(x) = e2πi(f(x)+g(x) = (ηξ)(x).

We then see that ξ and ξη are themselves characters, so Ĝ is a commutative multiplicative group (under
pointwise multiplication), with the identity being the trivial character, ξ0(x) = 1 identically. Now we want
to give it a topology.

Definition 1.3.2. A basis of a topology on a set X is a collection of opens sets B in X such that

(1) For each x ∈ X, there is some B ∈ B such that x ∈ B.
(2) If U ⊆ X is open, then for each y ∈ U , there exists some B ∈ B such that x ∈ B and B ⊆ U .

Let U be a family of neighborhoods of x ∈ X. We call U a local basis for x if for every neighborhood
V of x, there exists some U ∈ U such that U ⊆ V .

Every topology on a set X has a basis (though generally it is not unique). A collection of open sets
B is a basis of the topology on X if and only if for every x ∈ X, the subcollection of B containing only
neighborhoods of x is a local basis. In addition, if Y ⊆ X, then the collection BY = {B ∩ Y : B ∈ B} is a
basis on Y in the subspace topology. Likewise for a local basis of x ∈ Y ⊆ X.

Definition 1.3.3. Given f ∈ A ⊆ C(G), K ⊆ G compact, and ε > 0, let

BK(f, ε) = {g ∈ A : sup{|f(x)− g(x)| : x ∈ K} < ε}.
The sets BK(f, ε), varying over choices of K, f , and ε, form a basis for a topology on A. This is call the
topology of compact convergence or topology of uniform convergence on compact sets.

Since C is a metric space, C(G), and therefore Ĝ, is Hausdorff in the compact convergence topology
[Mun00][Thm 46.8 and Exercise 6 in Section 46]. We can alternatively describe the topology as follows:

ξn converges to ξ in Ĝ in the compact convergence topology if and only if for every compact K ⊆ G,
ξn converges uniformly to ξ ∈ Ĝ. It should be noted that one can show that the compact convergence
topology on Ĝ can be shown to coincide with the compact-open topology [Mun00][Thm 46.8] and the

weak∗ topology Ĝ inherits as a subspace of the dual space of L1(G) (see Chapters 2.3 and 3.3 in [Fol15]).

We note that with the compact convergence topology, Ĝ is a closed subspace of C(G) (basically, limits of
homomorphisms are homomorphisms).
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Theorem 1.3.4 (Arscoli Theorem). Suppose that X is a locally compact Hausdorff space and (Y, d) is
a metric space. Then a subset of continuous functions from X to Y , A ⊆ C(X, Y ) has compact closure in
the compact convergence topology if and only if

• For all x ∈ X, {ξ(x) : ξ ∈ A} is compact in Y .
• (Equicontinuity) For each ε > 0 and x ∈ X, there exists a neighborhood U ⊆ X of x such that for

all y ∈ U and ξ ∈ A, d(ξ(x), ξ(y)) < ε.

This can be found in [Mun00][Thm 47.1].

Theorem 1.3.5. If G is a locally compact Abelian group, then Ĝ is also a locally compact Abelian
group, with the compact convergence topology.

Proof. As mentioned above, Ĝ is Hausdorff. Now we show that Ĝ is indeed a topological group. It
is enough to show that for any two sequences {ξn}∞n=1, {ηn}∞n=1 of elements of Ĝ and any compact K ⊆ G
such that ξn → ξ and ηn → η uniformly on K, then ξnη

−1
n → ξη−1 uniformly on K. This follows from the

triangle inequality: for any x ∈ K,

|ξn(x)η−1n (x)− ξ(x)η−1(x)| = |ξn(x)η−1n (x)− ξ(x)η−1n (x) + ξ(x)η−1n (x)− ξ(x)η−1(x)|
≤ |ξn(x)| · |η−1(x)− η−1n (x)|+ |ξn(x)− ξ(x)| · |η−1(x)|

= |η(x)− ηn(x)|+ |ξn(x)− ξ(x)|.

Thus, if ξn and ηn converge uniformly on all compact subsets of G, so does ξnη
−1
n , giving us continuity of

the product and inversion operations.
To show locally compactness, we need to show that each ξ ∈ Ĝ has a compact neighborhood. Since Ĝ

is continuous under multiplication, we only need to show this for ξ0.
For 1 > ε > 0 and K ⊆ G compact with positive Haar measure, let

NK,ε := {ξ ∈ Ĝ : |ξ(x)− 1| < ε,∀x ∈ K}.

Since S1 is compact, we know that for all x ∈ G, {ξ(x) : ξ ∈ NK,ε} is compact, so we now only need to

show equicontinuity of NK,ε at each point of G. However, since Ĝ is a set of homomorphisms from G to
S1,

|ξ(x)− ξ(0)| = |ξ(y)| · |ξ(x)− ξ(0)| = |ξ(x+ y)− ξ(y)|

for all ξ ∈ ĝ and x, y ∈ G, so it suffices to show equicontinuity at 0 ∈ G. We quickly see that for any
ξ ∈ NK,ε,

σ(K) ≤
∫
K

|ξ(x)− 1|dσ(x) +
∣∣∣ ∫

G

ξ(x)1K(x)dσ(x)
∣∣∣ ≤ σ(K)ε+

∣∣∣ ∫
G

ξ(x)1K(x)dσ(x)
∣∣∣,

so ∣∣∣ ∫
G

ξ(x)1K(x)dσ(x)
∣∣∣ ≥ (1− ε)σ(K) > 0.

Lemma 1.2.6 and the continuity of inversion on G tells us that there must be some neighborhood U ⊆ G
of 0 such that for all x ∈ G and y ∈ U ,∫

G

|1K(x− y)− 1K(x)|dσ(x) < ε,
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so

|ξ(y)− 1| ≤ 1

(1− ε)σ(K)

∣∣∣(ξ(y)− 1)

∫
G

ξ(x)1K(x)dσ(x)
∣∣∣

=
1

(1− ε)σ(K)

∣∣∣ ∫
G

ξ(x+ y)1K(x)dσ(x)−
∫
G

ξ(x)1K(x)dσ(x)
∣∣∣

=
1

(1− ε)σ(K)

∣∣∣ ∫
G

ξ(x)1K(x− y)− 1K(x)dσ(x)
∣∣∣

≤ 1

(1− ε)σ(K)

∫
G

|1K(x− y)− 1K(x)|dσ(x)

<
ε

(1− ε)σ(K)
.

Theorem 1.3.4 (Arscoli Theorem) then tells us the closure of NK,ε in C(G) is compact. Since Ĝ is a

closed subspace of C(G), and inherits the subspace topology, the closure of NK,ε in Ĝ is its closure in C(G)

and so is also compact in Ĝ.
�

Proposition 1.3.6. If G is compact with normalized Haar measure (σ(G) = 1), then Ĝ is an or-
thonormal set in L2(G).

Proof. Let ξ, η ∈ Ĝ. Then
∫
G
|ξ(x)|2dσ(x) = 1. If η 6= ξ, then there is some x0 ∈ G such that

ξ(x0)η
−1(x0) 6= 1. We then have∫

G

ξ(x)η(x)dσ(x) =

∫
G

ξ(x)η−1(x)dσ(x)

= ξ(x0)η
−1(x0)

∫
G

ξ(x− x0)η−1(x− x0)dσ(x)

= ξ(x0)η
−1(x0)

∫
G

ξ(x)η−1(x)dσ(x)

where we have used the translation invariance of the Haar measure. We therefore must have
∫
G
ξ(x)η(x)dσ(x) =

0. �

We note that if G is not compact, that this proof still tells us that Ĝ is an orthogonal set in L2(G)

1.4. Fourier Transform

Definition 1.4.1. We define the Fourier transform F : L1(G)→ C(Ĝ) by

(1.4.1) Ff(ξ) = f̂(ξ) :=

∫
G

f(x)ξ(x)dσ(x)

The definition of the Fourier transform does not require one to assume the image L1(G) is a set of
continuous functions, however, the proof that this is indeed true uses Gelfand Theory of nonunital Banach
algebras, and the details can be found in [Fol15][Chp 1.2] or in [Rud90][Appendix D4]. Here we show
that the Fourier transform of an integrable function is sequentially continuous without this theory, and in
most spaces of interest (when Ĝ is first-countable), this proves continuity.
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Proof of sequential continuity. Suppose that ξn → ξ in the compact convergence topology on
Ĝ. Then for all x ∈ G, since {x} is compact, ξn(x) → ξ(x), so ξn converges pointwise to ξ. Then for any
f ∈ L1(G),

|f̂(ξn)− f̂(ξ)| =
∣∣∣ ∫

G

f(x)(ξn(x)− ξ(x))dσ(x)
∣∣∣

≤
∫
G

|f(x)| |ξn(x)− ξ(x)|dσ(x).

Since |f(x)| |ξn(x)−ξ(x)| ≤ 2|f(x)| for all x ∈ G and 2|f | ∈ L1(G), we have, by the Dominated Convergence

Theorem, that limn→∞ |f̂(ξn)− f̂(ξ)| = 0, so f̂ is sequentially continuous. �

Lemma 1.4.2 (Riemann-Lebesgue lemma for locally compact Abelian groups). For all f ∈ L1(G),

f̂ ∈ C0(Ĝ).

Proof. Since f̂ is continuous, we need only show that for every ε > 0, the set Kf,ε := {ξ ∈ Ĝ :

|f̂(ξ)| ≥ ε} is compact. We may do this using Theorem 1.3.4 (Arscoli’s Theorem). We immediately have

that for all x ∈ G, {ξ(x) : ξ ∈ Kf,ε} is compact, since it is a closed subset of S1. Since G is a locally
compact Abelian group, we now need only show equicontinuity of Kf,ε at 0 ∈ G. The proof is quite similar
to that of Theorem 1.3.5 at this point.

Let ε > 0, ξ ∈ Kf,ε, and y ∈ G. Then we have

|ξ(y)− 1|ε ≤
∣∣∣(ξ(y)− 1)

∫
G

f(x)ξ(x)dσ(x)
∣∣∣

=
∣∣∣ ∫

G

f(x)ξ(x− y)dσ(x)−
∫
G

f(x)ξ(x)dσ(x)
∣∣∣

=
∣∣∣ ∫

G

(
f(x+ y)− f(x)

)
ξ(x)dσ(x)

∣∣∣
≤ ‖Lyf − f‖L1(G),

so

|ξ(y)− 1| ≤ 1

ε
‖Lyf − f‖L1(G).

Since Ly is continuous, by Lemma 1.2.6, we see that for every δ > 0 there exists some neighborhood U
of 0 ∈ G such that for all y ∈ U , ‖Lyf − f‖L1(G) < εδ. Thus, on this neighborhood, |ξ(y)− 1| < δ, giving
us equicontinuity.

Theorem 1.3.4 (Arscoli Theorem) then tells us the closure of Kf,ε in C(G) is compact. Since Ĝ is a

closed subspace of C(G), and inherits the subspace topology, the closure of Kf,ε in Ĝ is its closure in C(G)

and so is also compact in Ĝ. �

Theorem 1.4.3. If G is compact, Ĝ is discrete. If G is discrete, Ĝ is compact.

Proof. Suppose that G is discrete. Then δ0 : G → C, with δ0(0) = 1 and δ0(x) = 0 for x 6= 0, is in
L1(G). Its Fourier Transform is given by

(1.4.2) δ̂0(ξ) =

∫
G

δ0(x)ξ(x)dσ(x) = ξ(0) = 1.

By Lemma 1.4.2 (Riemann Lebesgue),

Ĝ = {ξ ∈ Ĝ : |δ̂0(ξ)| ≥ 1}
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is compact.
Now, suppose instead that G is compact. Then 1 ∈ L2(G) ⊂ L1(G), and by Proposition 1.3.6, we know

that
∫
G
ξ(x)dσ(x) = 0 if ξ is not 1. So

{ξ ∈ Ĝ : |1̂(ξ)| > 1

2
} = {ξ ∈ Ĝ :

∣∣∣ ∫
G

ξ(x)dσ(x)
∣∣∣ ≥ 1

2
} = {1},

meaning that the preimage of {x ∈ C : |z| > 1
2
} under continuous function 1̂, the singleton {1} is open.

Since Ĝ is a topological group, every singleton is open, giving us our claim. �

Theorem 1.4.4. For all a, b ∈ C, f, g ∈ L1(G), y ∈ G, and ξ, η ∈ Ĝ, and defining f̃(x) = f(−x), we
have

(1) ‖f̂‖L∞(Ĝ) ≤ ‖f‖L1(G)

(2) F(af + bg) = af̂ + bĝ

(3) F(f ∗ g) = f̂ ĝ

(4) F(f) = F
(
f̃
)

(5) F(Lyf)(ξ) = ξ(y)f̂(ξ)

(6) F(ηf)(ξ) = Lη−1 f̂(ξ).

Proof. Part 2 follows from the linearity of integration, and 1 can be seen by

‖f̂‖L∞(Ĝ) = sup
ξ∈Ĝ

∣∣∣ ∫
G

f(x)ξ(x)dσ(x)
∣∣∣ ≤ sup

ξ∈Ĝ

∫
G

|f(x)| |ξ(x)|dσ(x) = ‖f‖L1(G).

For 3, we see, using Fubini’s Theorem and the translation invariance of the Haar measure

F(f ∗ g)(ξ) =

∫
G

(f ∗ g)(x)ξ(x)dσ(x)

=

∫
G

∫
G

f(x− y)g(y)ξ(x)dσ(y)dσ(x)

=

∫
G

g(y)ξ(y)

∫
G

f(x− y)ξ(x− y)dσ(x)dσ(y)

=

∫
G

g(y)ξ(y)dσ(y)

∫
G

f(x)ξ(x)dσ(x).

For 4, we use the fact that σ is inverse-invariant:∫
G

f(x)ξ(x)dσ(x) =

∫
G

f(x)ξ(x)dσ(x) =

∫
G

f(x)ξ(−x)dσ(x) =

∫
G

f(−x)ξ(x)dσ(x).

Again using the fact that ξ(x) = ξ−1(x) = ξ(−x) for ξ ∈ Ĝ and x ∈ G, as well as translation-invariance of
the Haar measure, we have∫

G

f(x+ y)ξ(x)dσ(x) =

∫
G

f(x)ξ(x− y)dσ(x) = ξ(−y)

∫
G

f(x)ξ(x)dσ(x)

and ∫
G

η(x)f(x)ξ(x)dσ(x) =

∫
G

f(x)ξ(x)η(x)dσ(x) = f̂(ξη−1),

giving us 5 and 6.
�
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Theorem 1.4.5 (Stone-Weierstrass Theorem). Let X be a locally compact Hausdorff space, and let A
be a subalgebra of C0(X) such that

(1) (Separating) If x 6= y (x, y ∈ X), f(x) 6= f(y) for some f ∈ A,
(2) If x ∈ X, f(x) 6= 0 for some f ∈ A,
(3) If f ∈ A, f ∈ A.

Then A is dense in C0(X).

This can be found as a special case of Bishop’s Theorem in [Rud91][Thm 5.7] (see the discussion below
the statement of Bishop’s Theorem).

Corollary 1.4.6. The space F(L1(G)) is dense in C0(Ĝ)

Proof. We already know that F(L1(G)) is closed under conjugation, by part 4 of Theorem 1.4.4.

Now, let ξ1, ξ2 ∈ Ĝ, with ξ1 6= ξ2. There must be some y ∈ G for which ξ1(y)− ξ2(y) = z 6= 0. Since ξ1
and ξ2 are continuous there is some open set U = {x ∈ G : |z − (ξ1(x)− ξ2(y))| < |z|

2
} . Since G is locally

compact, there exists some neighborhood A of y with compact closure. Since y ∈ A∩U , we know A∩U is
non-empty and open and has compact closure (A ∩ U ⊂ A), and so has finite positive Haar measure. Let
f = 1A∩U . Then

f̂(ξ1)− f̂(ξ2) =

∫
A∩U

ξ1(x)− ξ2(x)dσ(x)

=

∫
A∩U

z − z + ξ1(x)− ξ2(x)dσ(x)

= σ(A ∩ U)z −
∫
A∩U

z − (ξ1(x)− ξ2(x))dσ(x)

and since ∣∣∣ ∫
A∩U

z − (ξ1(x)− ξ2(x))dσ(x)
∣∣∣ ≤ ∫

A∩U
|z − (ξ1(x)− ξ2(x))|dσ(x) ≤ σ(A ∩ U)

|z|
2
,

f̂(ξ1) 6= f̂(ξ2).
Likewise, let V = {x ∈ G : |1− ξ1(x)| < 1

2
} and J be a neighborhood of 0 in G with compact closure,

so V ∩ J has finite positive Haar measure. Then, with f = 1J∩V ,

f̂(ξ1) =

∫
V ∩J

ξ1(x)dσ(x) = σ(V ∩ J)−
∫
V ∩J

1− ξ1(x)dσ(x) 6= 0.

Theorem 1.4.5 (Stone-Weierstrass Theorem) finishes our proof.
�

Proposition 1.4.7. Let g : G× Ĝ→ S1 be defined by g(x, ξ) = ξ(x). Then g is continuous.

Proof. Let x ∈ G, ξ ∈ Ĝ, f ∈ L1(G), and ε > 0. Due to the continuity of Lz from Lemma 1.2.6
and F(Lxf) from Lemma 1.4.2, there exists neighborhoods V of x and U of ξ such that for all y ∈ V and
η ∈ U ,

(1.4.3) ‖Lxf − Lyf‖L1(G) < ε and |F(Lxf)(ξ)−F(Lxf)(η)| < ε.

We therefore have, by the Triangle inequality and Theorem 1.4.4

|F(Lxf)(ξ)−F(Lyf)(η)| ≤ |F(Lxf)(ξ)−F(Lxf)(η)|+ |F(Lxf)(η)−F(Lyf)(η)|
< ε+ ‖Lxf − Lyf‖L1(G) < 2ε.
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Thus, hf : G × Ĝ → S1 defined by h(x, ξ) = ξ(x)f̂(ξ) = F(Lxf)(ξ) is continuous. This immediately

means that g(x, ξ) = ξ(x) is continuous in x. Now, let p ∈ C0(Ĝ) such that p(η) > 0 for all η ∈ Ĝ. Since

F(L1(G)) is dense in C0(Ĝ) by Corollary 1.4.6, there exists some sequence of functions pn ∈ L1(G) such

that p̂n → p in C0(Ĝ). Thus, for n sufficiently large, we have for any x ∈ G and η ∈ Ĝ

|p(ξ)ξ(x)− p(η)η(x)| ≤ |p(ξ)ξ(x)− f̂n(ξ)ξ(x)|+ |f̂n(ξ)ξ(x)− f̂n(η)η(x)|+ |f̂n(η)η(x)− p(η)η(x)|

= |p(ξ)− f̂n(ξ)|+ |f̂n(ξ)ξ(x)− f̂n(η)η(x)|+ |f̂n(η)− p(η)|

≤ 2‖p− f̂n‖L∞(Ĝ) + |F(Lxfn)(ξ)−F(Lxfn)(η)|
< 2ε+ |F(Lxfn)(ξ)−F(Lxfn)(η)|.

By the discussion above, we know we may then choose a neighborhood Vn of ξ such for η ∈ Vn, |p(ξ)ξ(x)−
p(η)η(x)| < 3ε. Thus p(ξ)ξ(x) is continuous as a function of ξ and x. Since p(ξ) > 0, we then have

g(x, ξ) = p(ξ)ξ(x)
p(ξ)

for all x ∈ G and ξ ∈ Ĝ, and so g is indeed continuous in both variables. �

1.5. Bochner’s Theorem and Fourier Inversion

1.5.1. Fourier-Stieltjes transform.

Definition 1.5.1. For a complex Radon measure µ on G, we define the total variation of µ by

|µ|(E) = sup
P

∑
A∈P

|µ(A)|, E a Borel subset of G,

where the supremum ranges over all countable, disjoint partitions P of E into Borel sets. The set of
complex Radon measures µ with |µ|(G) <∞ will be denoted by M(G).

Note that the total variation |µ| is a positive Radon measure with |µ(E)| ≤ |µ|(E) for all Borel sets
E ⊆ G.

The Fourier Transform can be extended M(G), which contains L1(G) as for all f ∈ L1(G), f(x)dσ(x)
defines a complex Radon measure with bounded total variation. For any µ ∈M(G) the Fourier-Stieltjes
transform of µ by

F(µ)(ξ) = µ̂(ξ) :=

∫
G

ξ(x)dµ(x), ξ ∈ Ĝ.

Proposition 1.5.2. For all µ ∈M(G), µ̂ is a bounded continuous function on Ĝ.

Proof. Let ε > 0, K ⊆ G compact with |µ|(G\K) < ε, ξ ∈ Ĝ, and NK,ε(ξ) := {η ∈ Ĝ : |η(x)−ξ(x)| <
ε, ∀x ∈ K}. Then for any η ∈ NK,ε(ξ),

|µ̂(ξ)− µ̂(η)| ≤
∫
G

|ξ(x)− η(x)|d|µ|(x)

≤ 2|µ|(G \K) + |µ|(K) sup
x∈K
|ξ(x)− η(x)|

≤ (2 + |µ|(G))ε,

giving us continuity. For boundedness, we have, for all ξ ∈ Ĝ,

|µ̂(ξ)| ≤
∫
G

|ξ(x)|d|µ|(x) ≤ |µ|(G) <∞.

�
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For any ν ∈M(Ĝ), we will define the Fourier-Stieltjes transform of ν by

(1.5.1) F(ν)(x) = φν(x) :=

∫
Ĝ

ξ(x)dν(ξ), x ∈ G.

Proposition 1.5.3. The Fourier-Stieltjes transform on M(Ĝ) is an injective map to the space of
bounded continuous functions on G, and

(1.5.2) ‖φν‖L∞(G) ≤ |ν|(Ĝ)

Proof. The proof that the Fourier-Stieltjes transform maps to the space of bounded continuous func-
tions in G and is norm-decreasing is similar to that in Proposition 1.5.2. For injectivity, suppose that
φν = 0 and f ∈ L1(G). Then, by Fubini’s Theorem

0 =

∫
G

f(x)φν(x)dσ(x) =

∫
G

∫
Ĝ

f(x)ξ(x)dν(ξ)dσ(x) =

∫
Ĝ

f̂(ξ−1)dν(ξ).

By Corollary 1.4.6, F(L1(G)) is dense in C0(Ĝ), so µ = 0. �

1.5.2. Functions of Positive type and Positive definite functions. For all f ∈ L1(G), let us

define f ∗(x) := f(−x). We call φ ∈ L∞(G) to be a function of positive type if∫
G

(f ∗ ∗ f)(x)φ(x)dσ(x) =

∫
G

∫
G

f(x)f(y)φ(x− y)dσ(x)dσ(y) ≥ 0 ∀f ∈ L1(G).

We see these definitions are equivalent, as∫
G

(f ∗ ∗ f)(x)φ(x)dσ(x) =

∫
G

∫
G

f(x− y)f(−y)φ(x)dσ(y)dσ(x)

=

∫
G

∫
G

f(x+ y)f(y)φ(x)dσ(y)dσ(x)

=

∫
G

∫
G

f(x)f(y)φ(x− y)dσ(y)dσ(x).

Definition 1.5.4. We call φ ∈ L∞(G) positive definite if, for all n ∈ N, c1, ..., cn ∈ C, and
x1, ..., xN ∈ G,

N∑
i,j=1

cicjφ(xi − xj) ≥ 0.

In other words, the matrix [φ(xi − xj)]Ni,j=1 is positive semi-definite for all N ∈ N and x1, ..., xN ∈ G.

We see that for n = 2, x1 = 0, this definition means that the matrix(
φ(0) φ(x2)
φ(−x2) φ(0)

)
is positive semi-definite, so φ(−x2) = φ(x2) and φ(0)2 − φ(x2)φ(−x2) ≥ 0. Thus |φ(x)| ≤ φ(0) for all
x ∈ G. Thus, positive definite functions are bounded.

Lemma 1.5.5. Every character ξ ∈ Ĝ is of positive type.

Proof. Let f ∈ L1(G). Then∫
G

∫
G

f(x)f(y)ξ(x− y)dσ(x)dσ(y) =
(∫

G

f(x)ξ(x)dσ(x)
)(∫

G

f(y)ξ(y)dσ(y)
)

= |f̂(ξ−1)| ≥ 0.

�
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Lemma 1.5.6. If f, g are functions of positive type, then so are f + g and fg.

Proof. Let N ∈ N and x1, ..., xN ∈ G. Since [f(xi − xj)]Ni,j=1 and [g(xi − xj)]Ni,j=1 are positive semi-

definite, so we immediately have that their sum [(f + g)(xi − xj)]
N
i,j=1 is as well. The Schur product

theorem tells us that the Hadamard product of these two matrices, [f(xi − xj)g(xi − xj)]Ni,j=1, is positive
semi-definite. �

Lemma 1.5.7. If φ is continuous and bounded on G, then the following are equivalent

(1) φ is of positive type.
(2) φ is positive definite.
(3)

∫
G

(f ∗ ∗ f)(x)φ(x)dσ(x) ≥ 0 for all f ∈ Cc(G).

This is Proposition 3.35 in [Fol15], and a complet proof is given there. Here, we will just prove that
positive type implies positive definiteness.

Proof. Let ψU be an approximate identity, and for c1, ...cn ∈ C and x1, ..., xn ∈ G, let fU :=∑n
j=1 cjLxjψU . Then

0 ≤
∫
G

∫
G

fU(z)fU(y)φ(z − y)dσ(z)dσ(y) =
n∑

j,k=1

cjck

∫
G

∫
G

ψU(z + xj)ψU(y + xk)φ(z − y)dσ(z)dσ(y).

Since φ is continuous,

lim
U→{0}

n∑
j,k=1

cjck

∫
G

∫
G

ψU(z + xj)ψU(y + xk)φ(z − y)dσ(z)dσ(y) =
N∑

j,k=1

cjckφ(xj − xk)

so the sum on the right is nonnegative. �

Lemma 1.5.8. If f ∈ L2(G), f ∗ ∗ f ∈ P(G).

Proof. For any n ∈ N, c1, ..., cn ∈ C and x1, ..., xn ∈ G, we have that

n∑
i,j=1

cicj(f
∗ ∗ f)(xi − xj) =

∫
G

n∑
i,j=1

cicjf(−y)f(xi − xj − y)dσ(y)(1.5.3)

=

∫
G

n∑
i,j=1

cicjf(xj − y)f(xi − y)dσ(y)(1.5.4)

=

∫
G

( n∑
i=1

cif(xi − y)
)( n∑

j=1

cjf(xj − y)
)
dσ(y)(1.5.5)

=

∫
G

∣∣∣ n∑
i=1

cif(xi − y)
∣∣∣2dσ(y) > 0.(1.5.6)

By Lemma 1.2.7, f ∗ ∗ f ∈ C0 and is bounded, and therefore is positive definite. Lemma 1.5.7 finishes our
proof. �

1.5.3. Bochner’s Theorem.
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1.5.3.1. Required Functional Analysis and Gelfand Theory.

Definition 1.5.9. We call a linear map T : X → Y between normed vector spaces X and Y (with
norms ‖·‖X and ‖·‖Y ) a linear operator. We define the operator norm on the space of linear operators
from X to Y by

(1.5.7) ‖T‖X,Y,op = sup{‖T (x)‖Y : x ∈ X, ‖x‖ ≤ 1},
and say that call T a bounded linear operator if ‖T‖X,Y,op <∞, i.e., there is some c ≥ 0 such that for
all x ∈ X,

(1.5.8) ‖T (x)‖Y ≤ c‖x‖X .

Definition 1.5.10. For a normed vector space X, we call a linear operator T : X → C(R) a linear
functional (or functional for short). If X is an ordered vector space (X,≥), then we T is positive if for
all v ∈ X with v ≥ 0,

(1.5.9) T (v) ≥ 0.

Theorem 1.5.11. Let X and Y be normed vector spaces, and T : X → Y be a linear operator. Then
T is continuous if and only if it is bounded.

This can be found in [Kre78][Thm 2.7-9].

Theorem 1.5.12 (Riesz Representation Theorem). Let X be a locally compact Hausdorff space and A
be a positive linear functional on Cc(X). Then there is a unique positive Radon measure µ, such that

A(f) =

∫
X

f(x)dµ(x) ∀f ∈ Cc(X).

In this case, the operator norm on A is the total variation of µ and A is a positive operator if and only if
µ is a positive measure.

This can be found in [Rud87][Thm 2.14].

Theorem 1.5.13 (Riesz-Markov Representation Theorem). Let X be a locally compact Hausdorff space.
For any continuous linear functional A on C0(X), there is a unique complex Radon measure with bounded
total variation on X, µ ∈M(X), such that

A(f) =

∫
X

f(x)dµ(x) ∀f ∈ C0(X).

This can be found in [Rud87][Thm 6.19].

Proposition 1.5.14 (Spectral Radius Formula). Let f1 ∈ L1(G), and for n ∈ N define fn+1 = f1 ∗ fn.
Then

(1.5.10) lim
n→∞

‖fn‖1/nL1(G) = ‖f̂1‖L∞(Ĝ).

The upper bound follows from Theorem 1.4.4 and Proposition 1.2.9, which give us

‖f̂1‖nL∞(Ĝ)
= ‖f̂n1 ‖L∞(Ĝ)

= ‖f̂n‖L∞(Ĝ)

≤ ‖fn‖L1(G).

The lower bound follows from a combination of showing that series of the form
∑ φ(fn)

λn
(for φ a bounded

linear operator) or
∑ fn

λn
are analytic (in other words a complex derivative exists) as a function of λ, using
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this to show boundedness of terms, and then using the Banach-Steinhaus (Uniform Boundedness Principle)
to finish the proof (or at least that is one way).

See Chapter 10 (particularly Theorem 10.13) in [Rud91], Appendix D6 in [Rud90], or Chapter 1
(particularly Theorems 1.8, 1.13, and 1.30) in [Fol15] for more of an introduction.

1.5.3.2. Bochner’s Theorem.

Lemma 1.5.15. If ν ∈M(Ĝ) is a positive measure, then φν is a continuous function of positive type.

Proof. We have continuity and boundedness by Proposition 1.5.3. For all f ∈ L1(G),∫
G

∫
G

f(x)f(y)φν(x− y)dσ(x)dσ(y) =

∫
G

∫
G

∫
Ĝ

f(x)f(y)ξ(x− y)dν(ξ)dσ(x)dσ(y)

=

∫
Ĝ

|f̂(ξ)|2dν(ξ) ≥ 0.

�

Theorem 1.5.16 (Bochner’s Theorem). A continuous function φ on G is of positive type if and only

if there is a (unique) positive measure ν ∈M(Ĝ) such that φ(x) = φν(x).

Proof. We proved one direction in Lemma 1.5.15, and uniqueness follows from injectivity from Propo-
sition 1.5.3.

Without loss of generality, assume φ is of positive type, with φ(0) = 1, and define the linear functional

Tφ(f) =

∫
G

f(x)φ(x)dσ(x) f ∈ L1(G).

We can quickly see that |Tφ(f)| ≤ ‖f‖L1(G), so this functional is bounded.
Let ψU be an approximate identity. Then, by Theorem 1.2.12, ψ∗U ∗ f → f in L1(G), so

lim
U→{0}

Tφ

(
ψ∗U ∗ f

)
= lim

U→{0}

∫
G

φ(x)(ψ∗U ∗ f)(x)dσ(x) =

∫
G

φ(x)f(x)dσ(x) = Tφ(f).

If supp(ψU) ⊆ U , then supp(ψ∗U ∗ ψU) ⊆ U − U , and∫
G

(ψ∗U ∗ ψU)(x)dσ(x) = |
∫
G

ψU(x)dσ(x)|2 = 1,

by Fubini’s Theorem, so ψ∗U ∗ ψU is an approximate identity and

lim
U→{0}

∫
G

φ(x)(ψ∗U ∗ ψU)(x)dσ(x) = φ(0) = 1.

Now we consider for all f, g ∈ L1(G)

〈f, g〉φ := Tφ(f ∗ g∗) =

∫
G

∫
G

f(x)g(y)φ(x− y)dσ(x)dσ(y),

which is linear in f , and satisfies 〈f, g〉φ = 〈g, f〉φ and 〈f, f〉φ ≥ 0, due to φ being of positive type. Thus,
this is a positive Hermitian form, and we may apply the Cauchy-Schwarz inequality to find

(1.5.11)
∣∣∣ ∫

G

φ(x)(ψ∗U ∗ f)(x)dσ(x)
∣∣∣2 ≤ ∫

G

φ(x)(f ∗ ∗ f)(x)dσ(x)

∫
G

φ(y)(ψ∗U ∗ ψU)(y)dσ(y),

so

(1.5.12)
∣∣∣ ∫

G

φ(x)f(x)dσ(x)
∣∣∣2 ≤ ∫

G

φ(x)(f ∗ ∗ f)(x)dσ(x).
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Let h0 = f ∗ ∗ f and for n ∈ N0, hn+1 = hn ∗ hn = h∗n ∗ hn. Since ‖φ‖L∞(G) = φ(0) = 1, (1.5.12) gives us∣∣∣ ∫
G

φ(x)f(x)dσ(x)
∣∣∣ ≤ ∣∣∣ ∫

G

φ(x)h0(x)dσ(x)
∣∣∣ 12 ≤ · · · ≤ ∣∣∣ ∫

G

φ(x)hn(x)dσ(x)
∣∣∣ 1
2n+1

≤ ‖hn‖2
−n−1

L1(G) .

Applying Proposition 1.5.14 (Spectral Radius Formula) we see that

|Tφ(f)| ≤ lim
n→∞

‖hn‖2
−n−1

L1(G) = ‖ĥ‖
1
2

L∞(Ĝ)
= ‖|f̂ |2‖

1
2

L∞(Ĝ)
= ‖f̂‖L∞(Ĝ).

Thus, if f, g ∈ L1(G) with ĝ = f̂ , then Tφ(g) = Tφ(f). Thus, we may define a bounded linear

functional Sφ on F(L1(G)) such that for all f ∈ L1(G), Sφ(f̂) = Tφ(f), with operator norm at most one.

Since F(L1(G)) is dense in C0(Ĝ), it extends to a linear functional on C0(Ĝ) of norm at most 1 (this can
be done via an approximation argument). Since Sφ is bounded and linear, it is continuous. By Theorem

1.5.13 (Riesz-Markov Representation Theorem), there is some ν ∈M(Ĝ) with |ν̃|(Ĝ) ≤ 1 such that∫
G

φ(x)f(x)dσ(x) = Sφ(f̂) =

∫
Ĝ

f̂(ξ)dν̃(ξ) =

∫
G

∫
Ĝ

f(x)ξ(x)dν̃(ξ)dσ(x).

This means that φ(x) =
∫
Ĝ
ξ(x)dν(ξ), where dν(ξ) = dν̃(ξ−1). Since

1 = φ(0) = ν(Ĝ) ≤ |ν|(Ĝ) = 1,

ν(Ĝ) = |ν|(Ĝ) and so ν is a positive measure. �

1.5.4. Fourier Inversion. Let B(G) := {φµ : µ ∈ M(Ĝ)}, with φµ as in (1.5.1), and P(G) be the
continuous functions of positive type. Bochner’s Theorem tells us the B(G) is the linear span of P(G). In

addition, we see the map from M(Ĝ) to B(G) is a bijection: surjectivity is immediate, and if φµ = 0, then
for all f ∈ L1(G),

0 =

∫
G

f(x)φµ(x)dσ(x) =

∫
G

∫
ĝ

f(x)ξ(x)dµ(ξ)dσ(x) =

∫
Ĝ

f̂(ξ−1)dµ(ξ),

and since F(L1(G)) is dense in C0(Ĝ), this means that
∫
Ĝ
g(ξ)dµ(ξ) = 0 for all g ∈ C0, so µ must be the

zero measure, giving us injectivity. We denote the inverse map of µ 7→ φµ by φ 7→ µφ, so φµφ = φ.

Lemma 1.5.17. If f, g ∈ B(G) ∩ L1(G), then f̂dµg = ĝdµf .

Proof. Let h ∈ L1(G). Then by Fubini’s Theorem∫
Ĝ

ĥ(ξ)ĝ(ξ)dµf (ξ) =

∫
Ĝ

∫
G

(h ∗ g)(x)ξ(x)dσ(x)dµf (ξ)

=

∫
G

(h ∗ g)(x)f(−x)dσ(x)

=
(
(h ∗ g) ∗ f

)
(0)

=
(
(h ∗ f) ∗ g

)
(0)

=

∫
Ĝ

ĥ(ξ)f̂(ξ)dµg(ξ).

The density of F(L1(G)) in C0(Ĝ) finishes the proof. �

Lemma 1.5.18. If K ⊆ Ĝ is compact, there exists f ∈ Cc(G) ∩ P(G) such that f̂ ≥ 0 on Ĝ and f̂ > 0
on K.
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Proof. Let h ∈ Cc(G) such that ĥ(1) =
∫
G
h(x)dσ(x) = 1, and let g = h∗ ∗ h. Then, by Theorem

1.4.4 ĝ(ξ) = |ĥ(ξ)|2, so ĝ ≥ 0 and ĝ(1) = 1, so there is a neighborhood U of 1 in Ĝ such that ĝ > 0, since ĝ
is continuous. Defining kU = {kξ : ξ ∈ U} for k ∈ K, we see by compactness that, for some n ∈ N, there
is some k1, ..., kn ∈ K such that K ⊂ ∪nj=1kjU . Let f(x) := (

∑n
j=1 kj(x))g(x). Then by Theorem 1.4.4,

f̂(ξ) =
n∑
j=1

ĝ(ξk−1j ),

so f̂ > 0 on K and f̂ ≥ 0 on Ĝ. If H = supp(h), then supp(f) = supp(g) = H−H = {h1−h2 : h1, h2 ∈ H},
which is compact, so f ∈ Cc(G). Finally, we see that for all b ∈ L1(G)∫

G

(b∗ ∗ b)(x)f(x)dσ(x) =
n∑
j=1

∫
G

∫
G

b(−y)b(x− y)kj(x)g(x)dσ(y)dσ(x)

=
n∑
j=1

∫
G

∫
G

b(−y)b(x− y)kj(−y)kj(x− y)g(x)dσ(y)dσ(x)

=
n∑
j=1

∫
G

(
(kjb)

∗ ∗ (kjb)
)
g(x)dσ(x) ≥ 0,

as g is of positive type, due to Lemma 1.5.8. �

Theorem 1.5.19 (Fourier Inversion Theorem 1). Suppose that the dual Haar measure σĜ is suitably

normalized with respect to the Haar measure on G. If f ∈ B(G) ∩ L1(G), then f̂ ∈ L1(G) and

(1.5.13) f(x) =

∫
Ĝ

f̂(ξ)ξ(x)dσĜ(ξ), ∀x ∈ G.

Proof. Let h ∈ Cc(Ĝ), with K = supp(h). By Lemma 1.5.18, there is some f ∈ L1(G) ∩ P(G) such

that f̂ > 0 on supp(h) and f̂ ≥ 0 on Ĝ. Let

I(h) =

∫
Ĝ

h(ξ)

f̂(ξ)
dµf (ξ).

If g is another such function, then by Lemma 1.5.17, we have∫
Ĝ

h(ξ)

f̂(ξ)
dµf (ξ) =

∫
Ĝ

h(ξ)

f̂(ξ)ĝ(ξ)
ĝ(ξ)dµf (ξ) =

∫
Ĝ

h(ξ)

f̂(ξ)ĝ(ξ)
f̂(ξ)dµg(ξ) =

∫
Ĝ

h(ξ)

ĝ(ξ)
dµg(ξ),

so I(h) does not depend on our choice of f , and since µf is a positive measure (by Bochner’s Theorem)

and f̂ ≥ 0, I(h) ≥ 0 if h ≥ 0. Now, suppose that m ∈ Cc(Ĝ) with J = supp(m). Then, again by Lemma

1.5.18, there is some f ∈∈ L1(G) ∩ P(G) such that f̂ > 0 on K ∪ J (which is compact) and f̂ ≥ 0 on Ĝ.
Due to I(h) dependence only on h, we then have, for a, b ∈ C,

(1.5.14) I(ah+ bm) =

∫
Ĝ

ah(ξ) + bm(ξ)

f̂(ξ)
dµf (ξ) = a

∫
Ĝ

h(ξ)

f̂(ξ)
dµf (ξ) + b

∫
Ĝ

m(ξ)

f̂(ξ)
dµf (ξ) = aI(h) + bI(m),

so I is a positive linear functional on Cc(Ĝ).
Moreover, if p ∈ B(G) ∩ L1(G), then supp(p̂h) ⊆ supp(h) is compact, so again by Lemma 1.5.17,

I(p̂h) =

∫
Ĝ

p̂(ξ)h(ξ)

f̂(ξ)
dµf (ξ) =

∫
Ĝ

h(ξ)dµg(ξ).
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Appropriate choices of p and h (such as p so that µp is a positive on supp(h) and h ≥ 0) give us I 6= 0, so
I is non-trivial.

Now, let η ∈ Ĝ. Then for all x ∈ G,∫
Ĝ

ξ(x)dµf (ηξ) =

∫
Ĝ

η−1(x)η(x)ξ(x)dµf (ηξ) = η(x)f(x),

so dµf (ηξ) = dµηf (ξ). Let f ∈ L1(G) ∩ P(G) such that f̂ > 0 on K ∪ supp(Lη−1h) (such a function
exists, but 1.5.18. By Lemmas 1.5.5 and 1.5.6 (Schur’s Lemma) and the fact that |ηf | = |f |, we see that

ηf ∈ L1(G) ∩ P(G) , and since, by Theorem 1.4.4, F(ηf)(ξ) = f̂(ηξ), we see that F(ηf)(ξ) > 0 on K.
Thus, we have

I(Lη−1h) =

∫
Ĝ

h(η−1ξ)

f̂(ξ)
dµf (ξ) =

∫
Ĝ

h(ξ)

f̂(ηξ)
dµf (ηξ) =

∫
Ĝ

h(ξ)

F(ηf)(ξ)
dµηf (ξ) = I(h),

so I is translation invariant.
By Theorem 1.5.12 (Riesz Representation Theorem), there is a unique positive Radon measure µ such

that I(h) =
∫
Ĝ
h(ξ)dµ(ξ) for all h ∈ Cc(Ĝ). Since µ must be translation invariant, by Theorem 1.2.3

(Haar’s Theorem), this must be a Haar measure on Ĝ (with the correct normalization).

By (1.5.14), we know that for f ∈ L1(G) ∩ B(G) and h ∈ Cc(Ĝ),∫
Ĝ

h(ξ)f̂(ξ)dσĜ(ξ) = I(f̂h) =

∫
Ĝ

h(ξ)dµf (ξ),

so f̂(ξ)dσĜ(ξ) = dµf (ξ). Since µf has bounded total variation (in other words, the positive and negative

(real and imaginary) parts must be finite) this means that f̂ ∈ L1(Ĝ). Finally, we have, from Theorem
1.5.16 (Bochner’s theorem) and the definition (1.5.1)∫

Ĝ

ξ(x)f̂(ξ)dσĜ(ξ) =

∫
Ĝ

ξ(x)dµf (ξ) = f(x).

�

Corollary 1.5.20. If f ∈ L1(G) ∩ P(G), then f̂ ≥ 0.

Proof. We know that f̂ ∈ C0(Ĝ), and from the proof of Theorem 1.5.19 (Fourier Inversion Theorem),

we know that f̂(ξ)dσĜ(ξ) = dµf (ξ), and µf is positive, by Theorem 1.5.16 (Bochner’s Theorem). �

When a Haar measure σ on G is given, the Haar measure that makes Theorem 1.5.19 true is called the
dual measure of σ. If σĜ is the dual measure of σ, then c−1σĜ is the dual measure of cσ, for c > 0. We
will now always denote the dual measure of σ by σĜ.

1.6. Plancherel Theorem

The Fourier inversion theorem is essentially half of a duality statement about “nice” functions f : G→
C determining precisely another “nice” function f̂ : Ĝ→ C. If we require the functions to be “nicer” then
this relationship becomes exact and they determine each other completely.

Definition 1.6.1. A Banach space X is a complete normed vector space. Examples of such spaces
include Rn, Cn, the space of continuous functions C(Y ), Lp (1 ≤ p ≤ ∞), among others.
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Theorem 1.6.2 (Bounded Linear Extension). Let X and Y be Banach spaces, Z a dense linear supspace
of X, and T a bounded (continuous) linear operator from Z to Y . Then there is a unique bound (continuous)
linear operator T̃ from X to Y such that T̃ is an extension of T (i.e. T = T̃ on Z). This satisfies
‖T‖Z,Y,op = ‖T̃‖X,Y,op.

This can be found in [Kre78][Thm 2.7-11].

Theorem 1.6.3 (Plancherel’s Theorem). The Fourier transform on L1(G) ∩ L2(G) extends uniquely

to a unitary isomorphism from L2(G) to L2(Ĝ)

Proof. Let f ∈ L1(G)∩L2(G). Then f ∗ ∗ f is continuous and in L1(G)∩P(G) by Lemmas 1.5.8 and

1.2.7 and F(f ∗ ∗ f) = |f̂ |2 by Theorem 1.4.4, so by Theorem 1.5.19 (Fourier Inversion)∫
G

|f(x)|2dσ(x) =

∫
G

f(x)f(−x)dσ(x)

= (f ∗ ∗ f)(0)

=

∫
Ĝ

F(f ∗ ∗ f)(ξ)ξ(0)dσĜ(ξ)

=

∫
Ĝ

|f̂(ξ)|2dσĜ(ξ),

or

(1.6.1) ‖f‖L2(G) = ‖f̂‖L2(G).

Thus F is an isometry in the L2 norms from L1(G)∩L2(G) to its image. The space of all integrable simple
functions on G is contained in L1(G) ∩ L2(G) and is dense in L2(G), and so L1(G) ∩ L2(G) is dense in

L2(G). Thus, by Theorem 1.6.2 F can be uniquely extended to a linear map from L2(G) to L2(Ĝ). This is
an isometry (meaning it is unitary), as for f ∈ L2(G) and fn ∈ L1(G)∩L2(G) such that fn → f in L2(G),
using (1.6.1),

‖f‖L2(G) = lim
n→∞

‖fn‖L2(G) = lim
n→∞

‖f̂‖L2(G) = ‖f̂‖L2(G).

Now, suppose that ψ ∈ L2(Ĝ) but ψ 6∈ F(L2(G)). Since F is a continuous linear operator, this must mean

that ψ is orthogonal to all f̂ ∈ F(L1(G) ∩ L2(G)), which is invariant under translations, Ly. Then by
Theorem 1.4.4 for f ∈ L1(G) ∩ L2(G) and x ∈ G,

0 =

∫
Ĝ

F(Lxf)(ξ)ψ(ξ)dσĜ(ξ) =

∫
Ĝ

f̂(ξ)ξ(x)ψ(ξ)dσĜ(ξ).

Since ψ, f̂ ∈ L2(Ĝ), f̂ψ ∈ L1(G), so f̂(ξ)ψ(ξ)dσĜ(x) represents an element of M(Ĝ). From the injectivity

of Proposition 1.5.3, f̂ψ = 0 a.e. for all f ∈ L1(G) ∩ L2(G). Lemma 1.5.18 tells us there exist some

f ∈ Cc(G) ∩ P(G) ⊆ L1(G) ∩ L2(G) such that f̂ ≥ 0 everywhere and f̂ > 0 on some compact set. Thus,
ψ must be zero a.e.

�

Corollary 1.6.4. If G is compact and σ(G) = 1, then Ĝ is an orthonormal basis for L2(G).

Proof. We already know that Ĝ is an orthornormal set from Proposition 1.3.6. If f ∈ L2(G) is

orthogonal to every ξ ∈ Ĝ, then

0 =

∫
G

f(x)ξ(x)dσ(x) = f̂(ξ)

for all ξ ∈ Ĝ, so f = 0, by Theorem 1.6.3 (Plancherel’s Theorem). �
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Theorem 1.6.5 (Parseval’s Formula). For any f, g ∈ L2(G), we have∫
G

f(x)g(x)dσ(x) =

∫
Ĝ

f̂(ξ)ĝ(ξ)dσĜ(x).

Proof. By Theorems 1.6.3 (Plancherel) and 1.4.4, we have

4

∫
G

f(x)g(x)dσ(x) =

∫
G

|f(x) + g(x)|2 − |f(x)− g(x)|2 + i|f(x) + ig(x)|2 − i|f(x)− ig(x)|2dσ(x)

=

∫
Ĝ

|f̂(ξ) + ĝ(ξ)|2 − |f̂(ξ)− ĝ(ξ)|2 + i|f̂(ξ) + iĝ(ξ)|2 − i|f̂(ξ)− iĝ(ξ)|2dσĜ(ξ)

= 4

∫
Ĝ

f̂(ξ)ĝ(ξ)dσĜ(ξ).

�

1.7. Pointryagin Duality

As we have shown in 1.3.5, Ĝ is a locally compact Abelian group, so it must have a dual
ˆ̂
G, with

operation ×, and for g ∈ L1(Ĝ) ∪ L2(Ĝ) and ψ ∈ ˆ̂
G,

ĝ(ψ) =

∫
Ĝ

g(ξ)ψ(ξ)dσĜ(ξ).

Each x ∈ G defines a character on Ĝ by

(1.7.1) ψx(ξ) = ξ(x),

which follows from Proposition 1.4.7 and the fact that ξ(x)η−1(x) = (ξη−1)(x). We define the map

m : G→ ˆ̂
G by

(1.7.2) m(x) = ψx.

Proposition 1.7.1. For compact K ⊆ G and C ⊆ Ĝ and r > 0, let

(1.7.3) NG(K, r) = {ξ ∈ Ĝ : |1− ξ(x)| < r, ∀x ∈ K}
and

(1.7.4) MG(C, r) = {x ∈ G : |1− ξ(x)| < r, ∀ξ ∈ C}.
These sets (and their translates) are open in their respective topologies. The family of all sets NG(K, r)

forms a local basis of 1 in Ĝ and the collection of all their translates is a base for the topology of Ĝ. The
family of all sets MG(C, r) is a basis for 0 in G and the collection of all of their translates forms a base
for the topology of G.

Proof. Let C ⊆ Ĝ be compact, set r > 0, and let x ∈ MG(C, r). For each ξ ∈ C, there are
neighborhoods Uξ of ξ and Wξ of x such that |1 − η(y)| < r for η ∈ U and y ∈ W . This follows from
continuity (Proposition 1.4.7). Since C is compact, finitely many sets Uξn cover C. If V = ∩nj=1Wξj (the
intersection of the corresponding neighborhoods of x), we see that V ⊆ MG(C, r). Thus, every element
of MG(C, r) has a neighborhood contained in MG(C, r), meaning this set is open. Since translation is
continuous, the translates of these sets are open.

A similar proof works for NG(K, r), but we also have this by the way we define the compact convergence

topology on Ĝ (see Definition 1.3.3). This definition also tells us that sets of the form (1.7.3) and their
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translates form a basis if the topology. Thus, all the elements of this basis which are neighborhoods of 1
form a local basis for 1. The elements of this local basis must be of the form

NG(K, r, η) = {ξ ∈ Ĝ : |η(x)− ξ(x)| < r, ∀x ∈ K},

for compact K ⊆ G, η ∈ Ĝ and r > 0. Suppose that 1 ∈ NG(K, r, η), and let

s = max{|1− η(x)| : x ∈ K} < r.

Then for any ξ ∈ NG(K, r − s), we have that for all x ∈ K

|η(x)− ξ(x)| ≤ |η(x)− 1|+ |1− ξ(x)| < r,

so ξ ∈ NG(K, r, η), and therefore NG(K, r − s) ⊆ NG(K, r, η). Thus, the sets of the form (1.7.3) form a
local basis of 1.

For the remaining part, we first show that {W −W : W ⊆ G open } form a local basis for 0 ∈ G.
Let p : G × G → G be defined by p(x, y) = x − y. We give G × G the product topology, so {W × U :
U,W ⊆ G open} is a basis of the topology, and p is continuous. Now, let V be a neighborhood of 0. Then
p−1(V ) ⊆ G × G is open and contains (0, 0). Thus, there are some neighborhoods of 0, U and W , such
that U ×W ⊆ p−1(V ). We then see that U ∩W is a neighborhood of 0, with (U ∩W )− (U ∩W ) ⊆ V .

Now, let U ⊆ G be a neighborhood of 0 and V ⊆ G be a compact neighborhood of 0 (local compactness
tells us this must exist). Let W = U ∩ V , so W is a compact neighborhood of 0.

Now, let f(x) = 1√
σ(W )

1W (x) and g = f ∗∗f . The function f is well defined, since W is a neighborhood

of 0 with compact closure, so it has positive finite measure, and f ∈ L2(G). Thus g ∈ C0(G) ∩ P(G) (i.e.
g is continuous, bounded, and of positive type), by Lemmas 1.2.7 and 1.5.8, and is (compactly) supported
on W −W , so g ∈ L1(G) as well. By Theorem 1.5.19 (Fourier Inversion Theorem), we have∫

Ĝ

ĝ(ξ)dσĜ(ξ) = g(0) = 1

and by Theorem 1.4.4, ĝ = |f̂ |2 ≥ 0. Thus, for r ∈ (0, 1
2
), there must exist some compact set C ⊆ Ĝ such

that for ∫
C

ĝ(ξ)dσĜ(ξ) >
2

3
.

Now, suppose x ∈MG(C, 1/3), so for ξ ∈ C, |1− ξ(x)| < 1
3

and so Reξ(x) > 2
3
. Thus

Re

∫
C

ĝ(ξ)ξ(x)dσĜ(ξ) ≥
∫
C

ĝ(ξ) Reξ(x)dσĜ(ξ) >
2

3

∫
C

ĝ(ξ)dσĜ(ξ) >
4

9

and ∣∣∣ ∫
Ĝ\C

ĝ(ξ)ξ(x)dσĜ(ξ)
∣∣∣ ≤ ∫

Ĝ\C
ĝ(ξ)dσĜ(ξ) <

1

3
,

so, by Theorem 1.5.19 (Fourier Inversion) and the fact that g is real valued, for x ∈MG(C, 1
3
),

g(x) =

∫
Ĝ

ĝ(ξ)ξ(x)dσĜ(ξ) >
1

9
.

Since g > 0 only on W −W , we have MG(C, 1
3
) ⊆ W −W . Thus, the family of sets MG(C, r) (for all

compact C ⊆ Ĝ and r > 0) forms a local basis of 0. Translating each of these elements by x ∈ G gives us
a local basis of x, finishing our claim. �

Lemma 1.7.2. The map m defined by (1.7.2) is injective.
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Proof. Suppose, indirectly, that there is some z ∈ G \ {0} such that m(z) = m(0). Then ψz(ξ) =

ψ0(ξ) = 1 for all ξ ∈ Ĝ. Thus, for all f ∈ L1(G) and ξ ∈ Ĝ, by Theorem 1.4.4

F(L−zf)(ξ) =

∫
G

f(y − z)ξ(y)dσ(y) =

∫
G

f(y)ξ(y)ξ(z)dσ(y) = f̂(ξ).

This means that F(L−zf) = f̂ for all L1(G), so by Theorem 1.5.19 (Fourier Inversion), L−zf = f for all
f ∈ L1(G) ∩ B(G).

Let U, V ⊆ G be neighborhoods of 0 and z, respectively, such that U ∩ V = ∅ (this can be done, as G
is Hausdorff). We see that V − z is a neighborhood of 0, and therefore so is B = U ∩ (V − z). Moreover

B ∩ (B + z) =
(
U ∩ (V − z)

)
∩
(

(U + z) ∩ V
)
⊆ U ∩ V = ∅.

From the proof of Proposition 1.7.1, we know there is some neighborhood A of 0 such that A − A ⊆ B.
Let K be a compact neighborhood of 0 (local compactness tells us this must exist), and W = K ∩ B, so
W is a compact neighborhood of 0.

Now, let f(x) = 1W (x) and g = f ∗ ∗ f . The function f ∈ L2(G), so g ∈ C0(G) ∩ P(G) (i.e. g is
continuous, bounded, and of positive type), by Lemmas 1.2.7 and 1.5.8, and is (compactly) supported on
W −W , so g ∈ L1(G)∩B(G). However, supp(g)∩supp(L−zg) ⊆ B∩(B+z) = ∅, which is a contradiction.

�

Proposition 1.7.3. If U ⊂ Ĝ is open and non-empty, there exists some f ∈ L1(G) ∩ L2(G) such that

f̂ 6= 0 and f̂(ξ) = 0 outside of U .

Proof. Let K ⊆ U be compact, with σĜ(K) > 0 and V be a compact neighborhood of 1 such that
KV = {ξη : ξ ∈ K, η ∈ V } ⊆ E. The proof that such a K and V can be chosen is similar to the proof
that the sets W −W form a basis, given in Proposition 1.7.1. Let g = 1K , h = 1V , and

p(ξ) = (g ∗ h)(ξ) =

∫
Ĝ

g(η)h(ξη−1)dσĜ(η).

We see that supp(p) ⊆ K + V ⊆ E∫
Ĝ

p(ξ)dσĜ(ξ) =

∫
Ĝ

∫
Ĝ

1K(η)1V (ξη−1)dσĜ(η)dσĜ(ξ) = σĜ(K)σĜ(V ) > 0,

so p is not identically 0 and p ∈ L2(Ĝ).

Since g, h ∈ L2(Ĝ), there must be some a, b ∈ L2(G) such that â = g and b̂ = h by Theorem 1.6.3

(Plancherel’s Theorem). By Hölder’s inequality, we know that ξb ∈ L2(G) for any ξ ∈ Ĝ and ab ∈ L1(G).
Thus, by Theorems 1.4.4 and 1.6.5 (Parseval’s Formula)∫

G

a(x)b(x)ξ(x)dσ(x) =

∫
Ĝ

g(η)h(ξη−1)dσĜ(η) = p(ξ),

so p = F(ab). Since p ∈ L2(G), by Theorem 1.6.3, ab ∈ L2(G), finishing the proof. �

As part of the proof of Proposition 1.7.3, we aslo showed the following:

Corollary 1.7.4. If f, g ∈ L2(G), then F(fg)(ξ) = (f̂ ∗ ĝ)(ξ).

Theorem 1.7.5 (Pontryagin duality). The map is an isomorphism and a homeomorphism from G to
ˆ̂
G. In other words, G is the dual space of Ĝ.
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Proof. Let x, y ∈ G and ξ ∈ Ĝ. Then we have

ψx+y(ξ) = ξ(x+ y) = ξ(x)ξ(y) = ψx(ξ)ψy(ξ) = (ψx × ψy)(ξ),

so the m(x+ y) = m(x)×m(y), so m is a homomorphism. Since m is injective, by Lemma 1.7.2, it is an

isomorphism from G to its image in
ˆ̂
G.

Next we show that m : G→ m(G) is a homeomorphism. By Proposition 1.7.1, sets of the form NĜ(C, r)

form a local basis at the identity in
ˆ̂
G and sets of the form MG(C, r) form a local basis at 0 in G, where

C ⊆ Ĝ are compact and r > 0. Note that this means that sets of the form NĜ(C, r) ∩m(G) form a local
basis of the identity in m(G). By the definition of m, we have

m(MG(C, r)) = {m(x) : x ∈ G, |1− ξ(x)| < r ∀ξ ∈ C}

= {ψ ∈ ˆ̂
G : ψ = m(x) for some x ∈ G and |1− ψ(ξ)| < r ∀ξ ∈ C}

= NĜ(C, r) ∩m(G).

Thus, m and its inverse are continuous at 0, and since m is an isomorphism, the same result holds at an
other point of G (or m(G)) by translation.

Thus, m : G→ m(G) is a homeomorphism, so m(G) is locally compact in the subspace topology m(G)

has as a subset of
ˆ̂
G. This means that for every y ∈ m(G), there is an neighborhood Vy of y in

ˆ̂
G such

that the m(G)-closure of Vy ∩m(G), which we will call K, is compact in m(G). Since the inclusion map

i : H → G is continuous, this means K is compact, and therefore closed, in
ˆ̂
G. Now, let W = Vy \ (Vy∩K).

We see that W ∩m(G) = ∅.
If m(G) is dense in

ˆ̂
G, then since W is open, W must be empty, so Vy ⊆ K ⊆ m(G). Then we would

have m(G) = ∪y∈m(G)Vy, so m(G) would be open. Since m(G) is a subgroup of
ˆ̂
G, this must mean that

every coset of m(G) is open. As the complement of the union of all but one coset, this means that m(G)
is closed, which with density, would give us our claim. Thus, we need now only prove density.

Now suppose, indirectly, that m(G) is not dense in
ˆ̂
G. Then, since m(G) is closed, by Proposition

1.7.3, we know there is some f ∈ L1(Ĝ) ∩ L2(Ĝ) such that f̂ is not identically zero, but f̂(ψ) = 0 for all
ψ ∈ m(G). Then, for all x ∈ G,∫

Ĝ

f(ξ)ξ−1(x)dσĜ(ξ) =

∫
Ĝ

f(ξ)ψx(ξ)dσĜ(ξ) = f̂(ψx) = 0.

Since f(ξ)dσĜ(ξ) gives a complex Radon measure of finite variation, injectivity from Proposition 1.5.3 tells

us that f = 0, and so f̂ = 0, which is a contradiction, so m(G) must be dense. Our claim now follows. �

1.8. Consequences of Duality

Corollary 1.8.1. A locally compact Abelian group G is compact if and only if Ĝ is discrete. G is
discrete if and only if Ĝ is compact.

Proof. This immediately follows from combining Theorem 1.4.3 with Theorem 1.7.5. �

Theorem 1.8.2 (Fourier Inversion Theorem 2). If f ∈ L1(G) and f̂ ∈ L1(Ĝ), then

(1.8.1) f(x) =
ˆ̂
f(−x)
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for x almost everywhere in G, i.e.

(1.8.2) f(x) =

∫
Ĝ

f̂(ξ)ξ(x)dσĜ(ξ), x a.e.

If f is continuous, (1.8.2) holds for all x ∈ G.

Proof. For all ξ ∈ Ĝ, we have

f̂(ξ) =

∫
G

f(x)ξ(x)dσ(x) =

∫
G

f(x)ξ(−x)dσ(x) =

∫
G

f(−x)ξ(x)dσ(x).

Defining dµf̂ (x) = f(−x)dσ(x), so µf̂ ∈ M(Ĝ), we see (considering the definition of B(Ĝ) and (1.5.1))

that f̂ ∈ B(Ĝ) ∩ L1(Ĝ). By Theorem 1.5.19, we know that for all ξ ∈ Ĝ

f̂(ξ) =

∫
G

ˆ̂
f(x)ξ(x)dσ(x).

Thus, f(x) =
ˆ̂
f(−x) almost everywhere. Since

ˆ̂
f is continuous, if f is continuous, they must be equal

everywhere. �

Theorem 1.8.3 (Uniqueness Theorem). If µ, ν ∈ M(G) and µ̂ = ν̂, then µ = ν. In particular, if

f, g ∈ L1(G) and f̂ = ĝ, then f = g.

Proof. Proposition 1.5.3 now tells us, replacing Ĝ with G (which we may now do, as we have G =
ˆ̂
G,

that M(G) is mapped injectively to the the space of bounded continuous functions on Ĝ, so µ is completely
determined by the function φµ(ξ) = µ̂(ξ−1). �





CHAPTER 2

Appendix

If I couldn’t find a good reference for results, and/or I am using them but perhaps am not covering
them in class, they are here.

Proposition 2.0.1. Let (X,µ) be a measure space and f ∈ Lp(X) for some p ∈ [1,∞). Then supp(f)
is σ-finite.

Proof. Let g(x) = |f(x)|p, so that g is integrable. Let A0 = [1,∞) and for n ∈ N, An = [ 1
n+1

, 1
n
). For

each n ∈ N0, we have

(2.0.1)
µ
(
g−1(An)

)
n+ 1

≤
∫
g−1(An)

g(x)dµ(x) ≤
∫
X

g(x)dµ(x) <∞.

Since g and f have the same support, we see that supp(f) = ∪∞n=0g
−1(An), so the support of f is σ-

finite. �
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